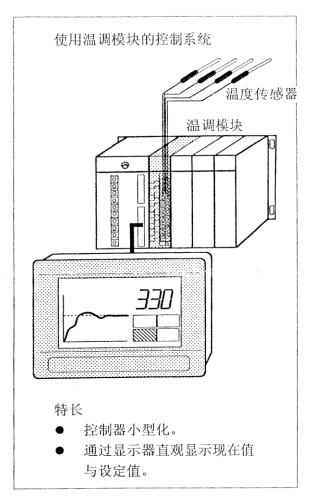

SU系列温度调节模块技术资料

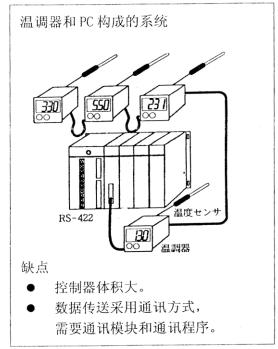
U-4LTC

[第一版]

光洋电子(无锡)有限公司

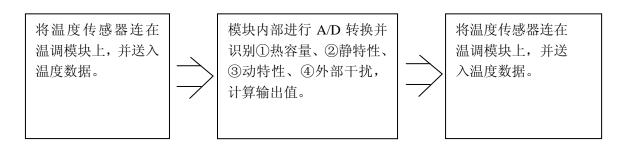

目 录

第一	一章	介绍	1
	1-1	U-4LTC 概要	1
	1-2	各部分名称及动作	3
	1-3	可以连接使用的温度传感器及其测温范围	4
第二	二章 车	俞入、输出装置的连接与设置	7
	2-1	SU-5/SU-6上的安装	7
	2-2	与输入、输出装置的连接	8
第三	三章 纟	扁程	10
	3-1	基本程序写入	10
	3-2	模式字的设定	13
	3-3	数据寄存器的设定	15
	3-4	寄存器监控	22
第4	4 章	系统构成例	23
	4-1	使用加热器的温度控制系统	23
	4-2	使用操作显示器(S-10D)的温度控制手续	25
	4-3	使用可编程序显示器(GC-5LC)的温度控制系统	28
第:	5 章 扌	观格一览	29
	5-1	一般规格	29
	5-2	性能规格	29
	5-3	内部回路图	30


第一章 介绍

1-1 U-4LTC 概要

■使用温调模块的优点



温调器和 PC 的控制系统,采用 通讯方式,率要通讯摸块和通讯程序 控制器体积大。如果使用温调模块构成 的系统,则没有以上缺点。

■关于温调模块

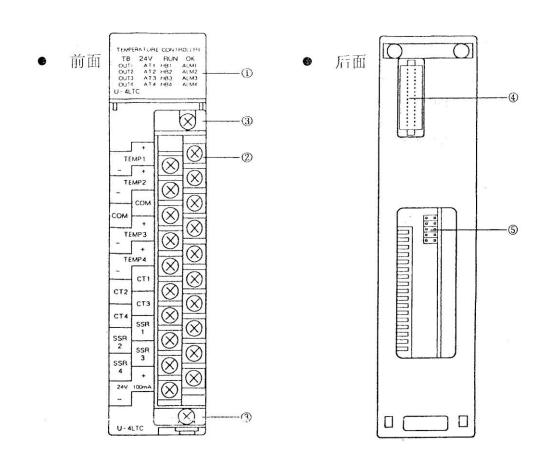
温调模块是内藏温度调节器的特殊 PC 模块,与温度传感器、操作显示器一同构成温度控制系统,以下是它的工作方式。

通过以上方式,可以使用温调模块稳定、简单地控制温度。

■U-4LTC 的特长

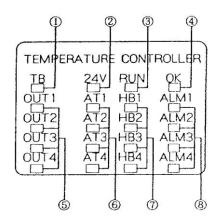
- ●可采用 PID、ON/OFF 两种控制方法。PID 控制使用自动调节法,无须花费时间进行参数设定。
- ●可以选用两种温度传感器: 热电偶、测温电阻(铂电阻)。通过短接片选择传感器的类型。
- ●端子台可插拔。更换模块及外部配线简单易行。
- ●温度控制参数全部在特殊寄存器、数据寄存器区中设定。设定及监控方便,而且可以自由 选择数据寄存器区。
- ●可以通过编程器强制写入功能,改变温度设定值、报警值、PID 采样周期等参数。
- ●各种报警信息、错误代码记录在数据寄存器中,监控方便。
- ●一个模块可以控制四路温度,即控制四台温度调节设备。

术语


温度传感器

为适应不同测温对象,温度传感器分为热电偶、测温电阻两种。测温物质被安放在保护管内,使用时将该部固定在测温位置。

操作器


操作器是给炉体加热或冷却的设备。它可以是控制加热器的继电器,或者是燃料供给的电磁 阀。

1-2 各部分名称及动作

	名 称	动 作
1	LED 显示部	指示模块状态,参见 [LED 显示]。
2	端子部	与输入、输出设备相连的 20PIN 端子台。
3	拆装螺丝	旋开该螺丝可取下端子台。
4	接插件	插装在基板上。
(5)	传感器型号切换开关	切换传感器的短接片。

■LED 显示

	显示	动 作
1	TB	端子台未固定好。
2	24V	外部电源电压低下。
3	RUN	温度模块工作正常时点亮。
4	OK	上电自诊断正常时点亮。
(5)	OUT1-4	驱动 SSR 的输出 ON 时点亮。
6	AT1-AT4	设定为自动调节时点亮。
7	HB1-HB4	加热器断线。
8	ALM1-4	温度超过上下限。

1-3 可以连接使用的温度传感器及其测温范围

■温度传感器的种类

本制品可以使用热电阻、测温电阻(铂电阻)两种温度传感器。

●热电偶型

热电偶型温度传感器具有以下特长。

- 测量温度范围宽
- 可以测量高温
- 抗冲击能力强
- 响应速度快

但是, 延长电缆时, 须要加补偿导线。

●测温电阻型

测温电阻的优点是精度高。但是,价格高,响应速度慢,抗冲击能力弱,容易受导线电阻影响。

所以,只在精度要求高的场合使用。

术语

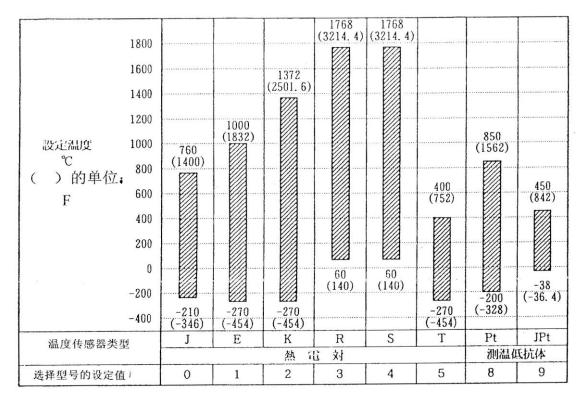
补偿导线

该导体与热电偶具有相同的电特性。用补偿导线将热电偶端子与冷接点连接,消除因热电偶端子部分温度变化造成的误差。

热电偶

热电偶利用金属电势随温度变化的特点,测量温度。在接触式温度传感器中,热电偶的测温范围最宽。

测温电阻


测温电阻利用金属阻抗随温度变化的特点,测量温度。一般其材料是纯度很高的白金线。

温接点、冷接点

热电偶的两个接点中,测温侧称温接点,连在模块一端的称冷接点。

■测量温度范围

不同的温度传感器有不同的测温范围,根据测温对象,选择相应的温度传感器。

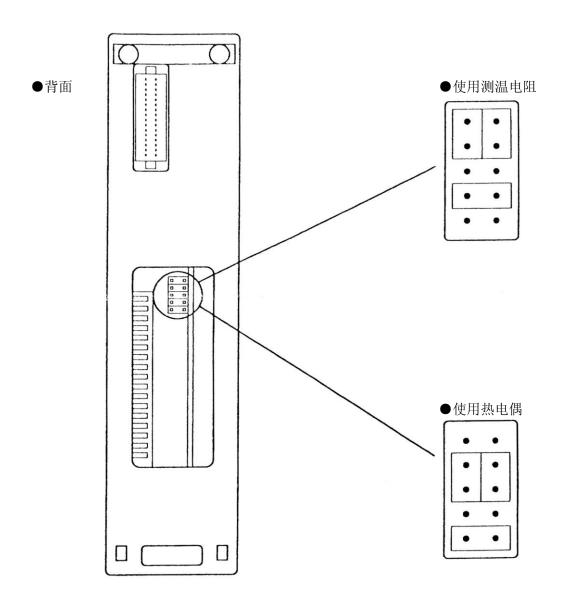
注意:一个模块最大可以连接4个温度传感器,连接不同类型的传感器受以下限制。

●可以同时使用的温度传感器:

K、J、E型

R、S型

- ●T 型不能与其他类型同时使用
- ●测温电阻只能用一种。


术语

Jt100 与 JPt100

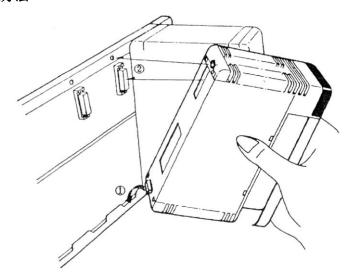
1984年4月按JIS 规格更改后生产的测温电阻 Pt100 与更改前的测温电阻 JPt00 不同。

传感器类型的设定

使用前必须设定传感器的类型。使用背面的短接片设定,设定方法如下所示。

第二章 输入、输出装置的连接与设置

2-1 SU-5/SU-6 上的安装


温调模块安装在基本基架,最多安装 8 个模块,一个模块可以控制 4 路温度,每一路占用 24 个字。一共: $8\times4\times24=768$ 字

SU-5/SU-6内藏数据寄存器 3072 字,使用温调模块时要注意寄存器空间。

■安装注意事项

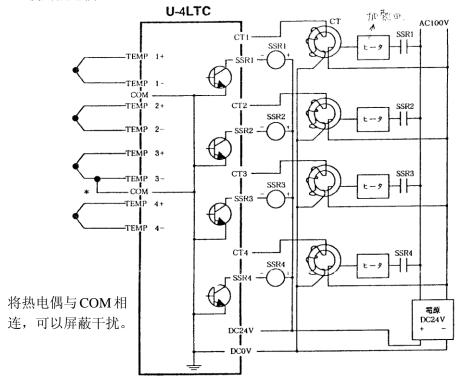
当 CPU 为 SU-5/SU-6 系列时,只能安装在基本基板上。 CPU 为 SU-5M/SU-6M 时,可以安装在扩展基板上。(U-14B/U-16B/U-18B)本模块不占用 I/O 资源。

■安装方法

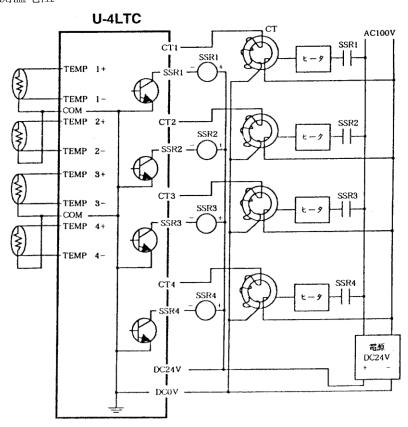
- 1. 将模块的下部插装在基板的槽位上。
- 2. 连接两者的接插件,旋转固定螺丝。

注意:模块不要松动,防止脱落,并且保证模块内屏蔽板的地线连接良好,抵制干扰。

术语


基本基板

CPU 所在的基板


2-2 与输入、输出装置的连接

■接线图

●使用热电偶

●使用测温电阻

■与温度传感器的连接

- ●与温调模块的端子台相连时,请注意[+][一]极性。一般温度传感器导线的正极为红色, 负极为蓝色。
- ●执行控制之前,先在数据寄存器中设定温度传感器型号。如果使用的传感器与设定的不同,则会发生采样误差。
- ■连接 CT(电流检出器)的必要性
 - ●连接 CT 后,温调模块可以判断加热器是否正常工作推荐产品: TOR-400. 1WL
- ■关于热电偶的测温精度

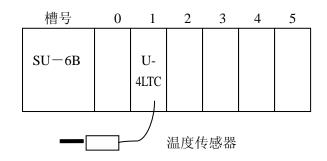
使用热电偶加长电缆时,请选用与之对应的补偿导线。否则会造成读取误差。

术语

CT(电流检出器)

电流检出装置,可以检测出加热器断线故障。

第三章 编 程


3-1 基本程序写入

使用本模块时,必须写入基本程序,并在特殊寄存器中设定参数。在基本程序中写入以下内容。

- 温调模块占用寄存器区首番号
- 温调模块的控制路数

■基本程序的写入方法

- ●例 该条件符合以下条件
- 1. 温调模块插在1槽。
- 2. 温调模块占用数据寄存器区 从 R5000 开始。
- 3. 控制路数为1。

说明:

CPU 右边相邻的是第 0 槽,从左至右为 0-7 槽。 SP0 线圈只在 CPU RUN 后接通一个扫描周期。

■基本程序使用的特殊寄存器

将数据寄存器区、控制路数设定在与模块所在槽位对应的特殊寄存器中。同时,错误标记、版本号被计入与模块所在槽位对应的特殊寄存器中。

温调模块使用特殊数据寄存器一览:

槽号	基本程序中设定的特殊寄存器		由温调模块写)	的特殊寄存器
	寄存器区首番号	控制路数	错误标志	版本号
0	R7660	R7670	R7710	R7730
1	R7661	R7671	R7711	R7731
2	R7662	R7672	R7712	R7732
3	R7663	R7673	R7713	R7733
4	R7664	R7674	R7714	R7734
5	R7665	R7675	R7715	R7735
6	R7666	R7676	R7716	R7736
7	R7667	R7677	R7717	R7737

●关于数据寄存器区首番号

从首番号起,每一路占用 24 个数据寄存器。根据设定的路数,一共占用 24-96 个字。而且,记载番号的特殊寄存器随模块插装槽号的不同而变化。

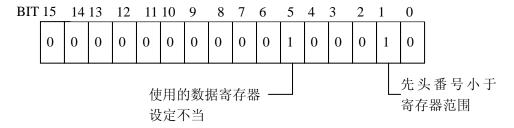
例:如果温调模块插在04槽,则数据寄存器区首番号设定在R7664。

●控制路数

指定温模块可以使用的路数。最大可以使用 4 路,使用 3 路时,选用从第一路开始的 1-3 路。

例:使用安装在第四槽温调模块上的全部 4 路,在 R7664 中写入 BCD 数 4,从寄存器首番号开始的 96 个寄存器被占用。

●关于错误标志


模块所在槽位不通,记录错误标志的特殊寄存器也不同。错误标志以位的形式表示。发生错误时,24V及TB指示灯交替闪烁,错误标志可以通过编程器监控。

例:错误标志为0002时,首番号太小,不在数据寄存器范围内。

错误标志一览

Bit 号	16 进制数	内 容
0	0001	不使用
1	0002	首番号小于数据寄存器区范围
2	0004	首番号大于数据寄存器区范围
3	0008	指定路数据超过4路
4	0010	首番号接近数据寄存器区上限,寄存器不够用
5	0020	数据寄存器设定不当
6	0040	特殊寄
7	0080	不使用
8	0100	不使用
9	0200	不使用
10	0400	不使用
11	0800	不使用
12	1000	不使用
13	2000	不使用
14	4000	不使用
15	8000	不使用

例 当温调模块插装在第 4 槽,监控 R7714 读取错误信息如果监控结果是[0022]。

●关于版本号

记载温调模块系统程序的版本号。电源 ON 时,登记版本号。 例 如果温调模块插在第 4 槽,版本号为 ver.1.01 时,R7734 中记入 0101。

3-2 模式字的设定

使用温调模块之前,通过基本程序设定各种设定值。下面对重要的模式字加以说明。例如,首番号为 R5000 时,模式字设定在 R5000 中。

■模式字的设定方法

可以通过编程器,也可以编制程序设定模式字。

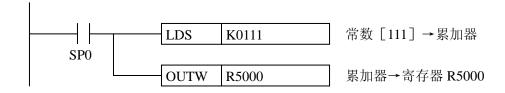
下面介绍用(S-01P)直接修改模式字。

 1. 为了监控模式字的设定值,在编程器上依次键入 R
 5
 0
 0

 R MON 。

【S-01P】显示:

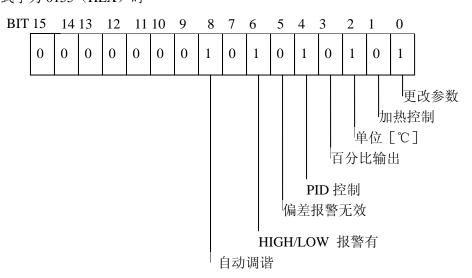
		R5001	R5000	
REG	MON	0000	0000	


2. 修改模式字(强制数据写入)

例:将模式字的第 0,4,8 位置 ON,依次键入 K 1 I ENT

■【S-01P】显示:

		R5001	R5000	
REG	MON	0000	0111	


说明:用程序修改

■ 模式字的设定内容 模式字设定一览:

BIT 号	16 进制数	内 容		
0	0001	当要更新 PID、报警参数时,将该位置 1,新的参数被读入		
U	0001	后,该位归 0。		
1	0002	设定控制方式。		
1	0002	1: 冷却控制 0: 加热控制		
		温度单位设定。范围-3276.7~+3276.7,负值大于 32768		
2	0004	(8000H)		
		1: 单位为摄氏温度 0: 单位为华氏温度		
3	0008	数据寄存器的输出形式		
	0000	1: 0~4096(模拟量) 0: 0~100%		
4	0010	控制方法		
		1: PID 控制 0: ON/OFF 控制		
5	0020	温度偏差报警有效/无效设定		
		1: 有效 0: 无效		
6	0040	温度高报警/温度低报警的有效/无效设定		
7	0080	不使用		
8	0100	自动调谐的 ON/OFF 设定		
	0100	1: ON 0: OFF		
9	0200	只作 PI (比例、积分) 控制时置 1		
10	0400	不使用		
11	0800	不使用		
12	1000	不使用		
13	2000	不使用		
14	4000	加热器强制 ON 时置 1		
15	8000	加热器强制 OFF 时置 1		

例:模式字为0155 (HEX)时

指示范围: -3276.7~+3276.7。负值高于 32768 (8000H)

术语

冷却控制

冷却控制为负动作。当温度高于设定值,输出增加。

加热控制

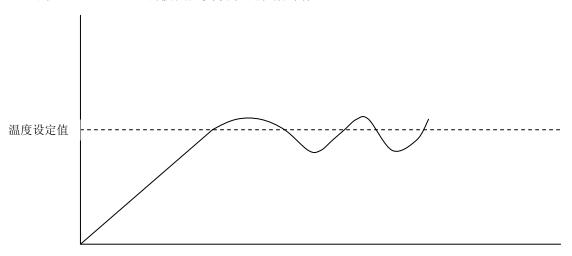
加热控制为正动作。当温度低于设定值,输出增加。

3-3 数据寄存器的设定

温调模块每一路占用数据寄存器 24 个字。这里对以数据寄存器 R5000 起始的 24 个字加以说明,控制路数大于 2 时循环操作。

数据寄存器一览

寄存器号	名 称	设定单位	设定目的	勺 (*2)
(*1)	4		ON/OFF 控制	PID 控制
R5000	模式字	BIT 指定	(C
R5001	温度设定值	±3276.7°C/° F	(O
R5002	输出偏置值	0.0~100%/0~4096	监	空用
R5003	输 出	0.0~100%/0~4096	监打	空用
R5004	报警字	BIT 指定	监护	空用
R5005	当前温度	±3276.7℃/° F	()
R5006	比例	0.0~3276.7	×	0
R5007	积 分	0~32757s	×	0
R5010	微分	0~32757s	×	0
R5011	温度低值报警	±3276.7℃/° F	7	
R5012	温度高值报警	±3276.7℃/° F	7	
R5013	温度偏差值报警	±3276.7℃/° F	7	
R5014	报警不感带	0.0~50.0℃	7	$\overset{\sim}{\lambda}$
R5015	设定值下限	±3276.7℃/° F	7	$\stackrel{\checkmark}{\sim}$
R5016	设定值上限	±3276.7℃/° F	7	$\stackrel{\star}{\sim}$
R5017	输入类型	(*3)	()
R5020	PID 控制周期	0.5~99.9s		×
R5021	ON/OFF 停滯	0.0~3276.7°C/° F	7	$\stackrel{\star}{\sim}$
R5022~R5027	不使用	_		_


- *1)首番号设定为 R5000
- *2)○:要设定 X:不要设定 ☆:有必要时设定
- *3) 输入类型,参见 P5

●模式字(R5000)

指定输出格式、指定报警参数、PID参数。每一路对应一个模式字,必须分别设定。各 BIT 的含义参见 [3-2 模式] 模式字的设定。

●温度设定值(R5001)

指定控制目标温度。例如,目标温度为+500℃时,写入 1388 (HEX)。设定值为负值时,最高 BIT 置 ON。温调模块反复读取该数据寄存器。

注意: <U-4LTC>的温度设定值以 0.1℃为最小单位,必须以 16 进制数写入。 例,设定值为+500℃时,写入 16 进制数 1388 (HEX)。

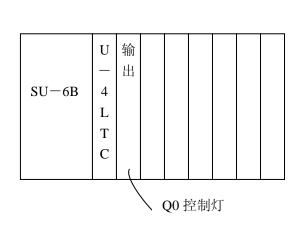
说明:模式字的第2位指定温度单位(°C/°F)

●输出偏置值(R5002)

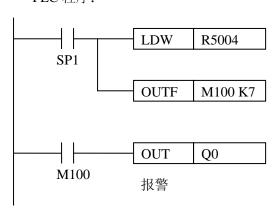
根据 R5007(积分参数)、R5010(微分参数)、输入值计算出的偏置值。

●输出(R5003)

说明:模式字的第3位选择数值单位(百分比/BCD)


●报警字(R5004)

记录报警、传感器及输出状态。报警解除后报警字复位。


☆报警字一览

BIT 号	16 进制数	内 容
0	0001	发生下限报警时,0→1。
1	0002	发生上限报警时,0→1
2	0004	发生温度偏差报警时,0→1
3	0008	温度传感器断线或短路时,0→1
4	0010	温度传感器断线时 0→1
5	0020	温度传感器短路时 0→1
6	0040	自动调谐发生错误时 0→1
7	0080	扫描超时,0、1交替变化。
8	0100	不使用
9	0200	不使用
10	0400	不使用
11	0800	不使用
12	1000	不使用
13	2000	不使用
14	4000	不使用
15	8000	不使用

例 当温度低于 200℃时,蜂鸣器报警。

术语

自动调谐错

自动调谐过程中,温度模块的偏置输出超过90%时,自动调谐停止。

●当前温度(5005)

温度传感器测得的当前温度值。该数据寄存器被采样值更新。

●比例 (R5006)

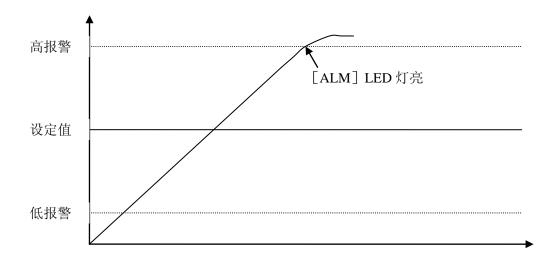
表示 PID 控制的比例参数。当模式字的第 0 位被置 1 时,该数据被模块读取。当自动调谐完成后,模块写入比例值。

●积分(R5007)

表示 PID 的积分参数。设定为 0 时,积分无效。当模式字的第 0 位被置 1 时,该数据被模块读取。自动调谐完成后,模块写入计算过的积分值。

●微分(R5010)

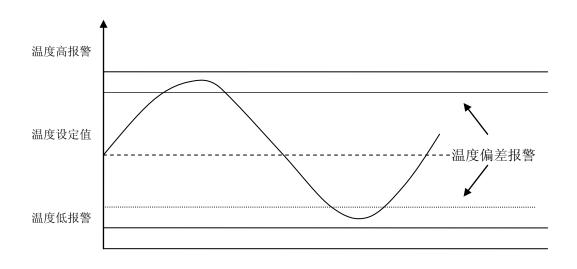
表示 PID 控制的微分参数。设定为 0 时,微分无效。当模式字的第 0 位被置 1 时,该数据被模块读取。自动调谐完成后,模块写入计算过的微分值。


●温度低报警(R5011)

确定控制温度的下限值。当前温度小于该温度值时,温度低报警标志位置 1。 当模式字第 0 位被置 1 时,该数据被温调模块读取。

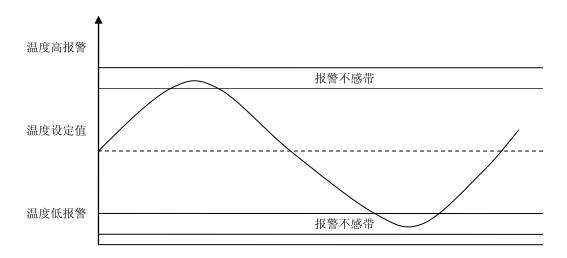
●温度高报警(R5012)

确定控制温度的上限值。当前温度大于该温度值时,温度高报警标志位置 1。 当模式字第 0 位被置 1 时,该数据被温调模块读取。


温度低报警及温度高报警在危险度较高的环境下使用。

●温度偏差报警(R5013)

当前温度与设定温度的差值大于该寄存器数值时,报警字的第2位置1,适用于危险度低的场合。当模式字第0位置1时,该数据被温调模块读取。


温度偏差报警在危险度低的场合适用。当控制对象的温度接近危险温度时,发出通知。

说明:温度偏差报警有效时,模式字第0位置1。

报警不感带(R5014)

放宽温度报警区。防止当前温度接近上、下限时,外部冲击造成误动作。 当模式字第0位置1时,该数据被温调模块读取。 报警不感带用于防止外部干扰(如冷库门打开)造成的误报警。

●设定值下限(R5015)

确定设定值变更的下限。防止温度设定值过低,温度设定值必须高于该数值。 当模式字第0位置1时,该数据被温调模块读取。

说明:设定值下限有效时,模式字的第6位置1。

●设定值上限(R5016)

确定设定值变更的上限。防止温度设定值过高,温度设定值必须低于该数值。 当模式字第0位置1时,该数据被温调模块读取。

说明:设定值上限有效时,模式字的第6位置1。

●输入类型(R5017)

确定使用传感器的类型。

当模式字第0位置1时,该数据被温调模块读取。

☆输入类型的设定值

设定值	输入类型		
0		J	
1	热	Е	
2	电	K	
3	偶	R	
4		S	
5		T	
8	测温电阻	JT100	
9		JPT100	

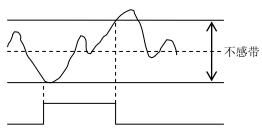
注意: 在同一模块上安装不同类型的传感器时, 受到以下限制:

- ●可以同时使用的传感器
 - ⊙K、J与E型
 - ⊙R、S型
- ●T 型热电偶不能与其他类型同时使用。
- ●测温电阻只能同时使用一种。

●PID 控制周期(R5020)

PID 控制周期(从读入数据到输出之间的间隔)以 0.1 秒位单位进行设定。

初始值=2s,设定范围=0.5~99.9s。


当模式字第0位置1时,该数据被温调模块读取。

●ON/OFF 停滯范围(R5021)

确定 ON/OFF 控制停滞范围。该参数表示输出 变化的不感带。当模式字第 0 位置 1 时,该数据 被温调模块读取。只用于 ON/OFF 控制。

温度设定值

输出 ON OFF

●不使用区域(R5022~R5027)

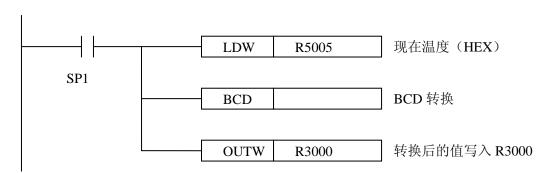
不必作任可设定。

注意:不要用于其他操作。否则会发生误动作。

3-4 寄存器监控

可以使用编程器监控温调模块使用的特殊寄存器、数据寄存器的值。

这里介绍用<S-01P>监控现在温度值的方法。假设当前温度值存放在 R5005 中。


- 1. 在编程器上依次键入 R 5 0 0 5 R MON
- 2. 编程器的显示部以16进制数显示当前温度。

【S-01P】显示

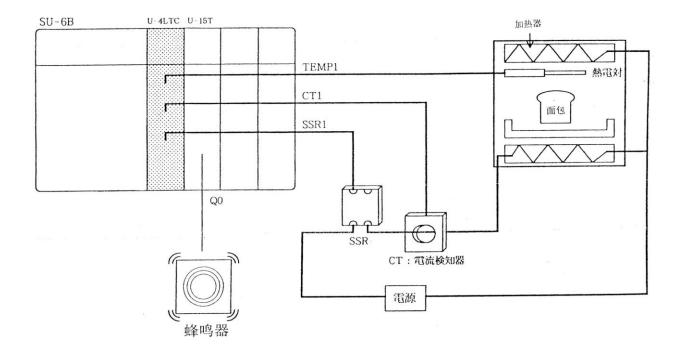
	R5006		R5005
REG	MON	0000	07D0

07D0 (HEX) 转换为 10 进制数等于 2000, 所以现在温度为 200.0℃

说明: R5005 中的数据为 16 进制数,使用 BCD 转换指令转换成 10 进制数。

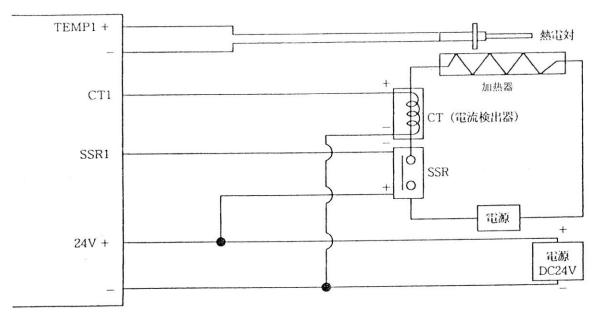
用编程器监控 R3000,以 10 进制数显示当前温度。

【S-01P】显示部(200℃)

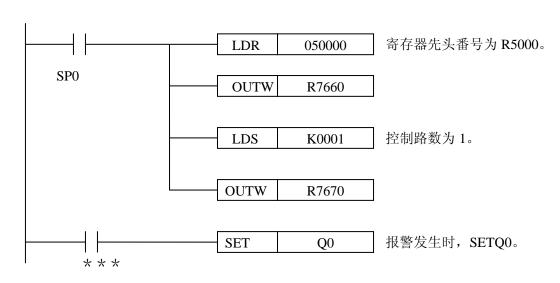

		R3001	R3000
REG	MON	0000	2000

第4章 系统构成例

4-1 使用加热器的温度控制系统


下例是采用 SU-6B 控制加热器的温度控制系统。为了检测出加热器断线,外接 CT(电流 检出器)

■系统构成



■连接图

当热电偶使用 [TEMP1] 时,相应地连接 SSR1、CT1。

■编程

■写入设定值

当首番号为 R5000 时,主要设定值如下所示。

温度设定值: 150 (℃) →R5001

比例值: 125.0→R5006

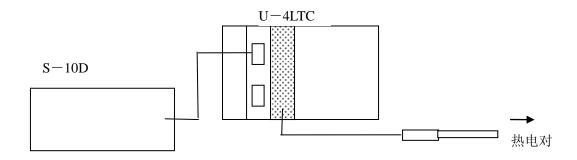
积分值: 10.0 (秒) →R5007 微分值: 0 (秒) →R5010

热电偶类型: K→R5017

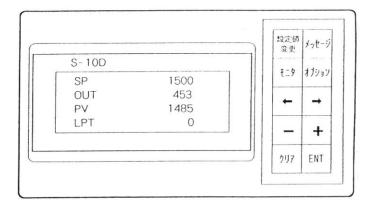
控制路数: 1→R 7670

加热器断线检出: 有效→R5000 (BIT7)

温度控制方法: PID→R5000 (BIT4)


自动调谐: 无→R5000 (BIT8)

系统构成


4-2 使用操作显示器 (S-10D) 的温度控制手续

该系统通过 S-10D 监控温度设定值、当前温度等主要参数。

■系统构成

■S-10D 显示例

○字符的含义

SP: 温度设定值 (左边例表示 150.0℃)

OUT: 输出

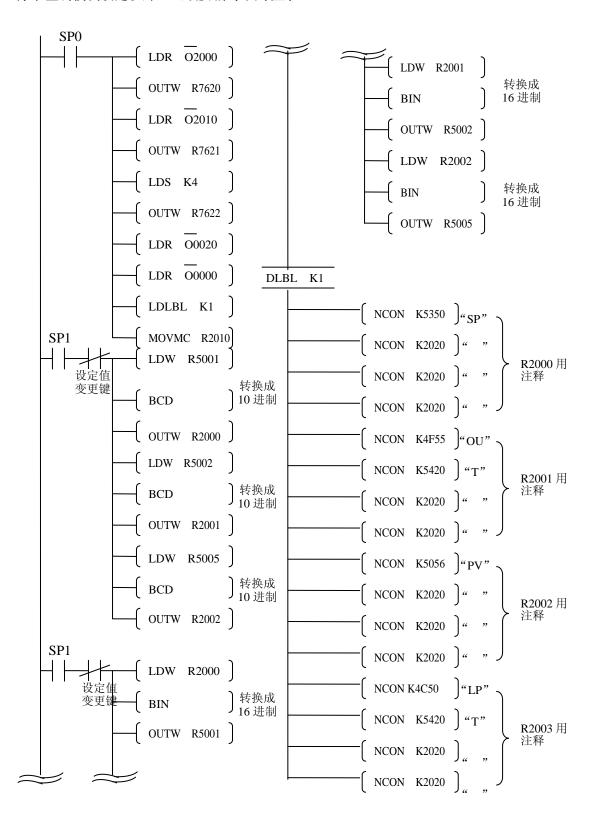
(左边例表示 45.3%)

PV: 当前温度值

(左边例表示 148.5℃)

■编程例

为了使 S-10D 字符显示、设定值变更有效,必须在以下特殊寄存器中设定参数。R7620: 设定值变更寄存器的首番号 R7621: 记录注释寄存器的首番号


例 如果 R7620=2000 R7621=2010 S-10D 的显示面板分配如下:

R2014 R2015 R2016 R2017 R2001 R2020 R2021 R2022 R2023 R2002 R2024 R2025 R2026 R2027 R2027	R2010	R2011	R2012	R2013	R2000
112020 112021 112022 112002	R2014	R2015	R2016	R2017	R2001
Danas Danas Danas Danas	R2020	R2021	R2022	R2023	R2002
R2024 R2025 R2026 R2027 R2003	R2024	R2025	R2026	R2027	R2003

注释内容

显示数据

除了温调模块设定以外,还须要编写下列程序。

■通过 S-10D 改变设定值

下面就变更值加以说明。例如,设定值从150.0℃变更为160.0℃。

1. 按下[设定值变更] 键光标显示出来。 说明:按[+][一] 键,将光标移到合适 的位置 。

SP	1500
OUT	453
PV	1485
LPT	0

2. 按 [ENT] 键。 光标移向数值侧。

SP	1500
OUT	453
PV	1485
LPT	0

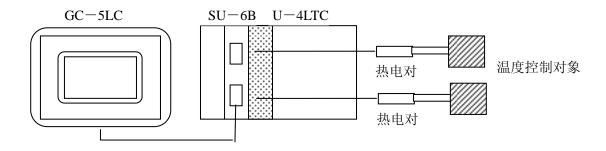
按 [←]、[→] 键左右移动光标。
 这里连续按两次 [←]。

SP	1500
OUT	453
PV	1485
LPT	0

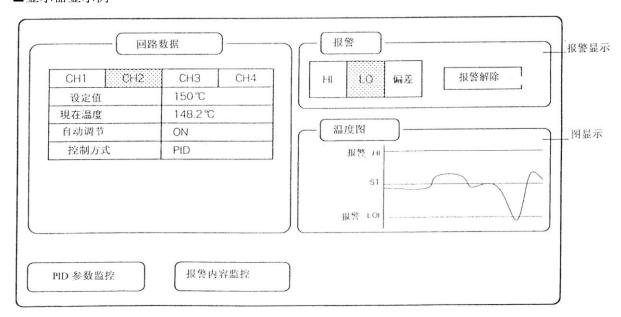
4. 按 [+]、[-] 键,变更设定值。 这里按两次 [+]。

SP	1600
OUT	453
PV	1485
I PT	0

5. 按 [CLR] 键, 光标消失。


SP	1600
OUT	453
PV	1485
LPT	0

4-3 使用可编程序显示器 (GC-5LC) 的温度控制系统


使用 GC-5LC 可以完成以下功能

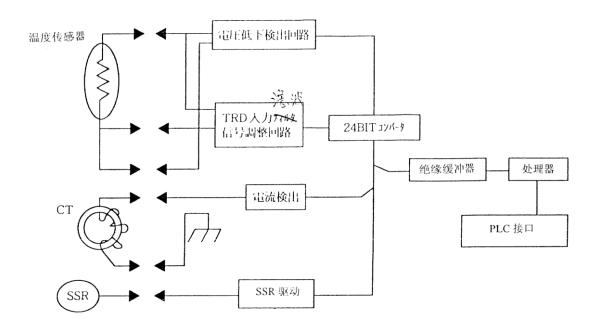
- ⊙监控当前温度值及报警。
- ⊙修改温度设定值及 PID 参数。
- ⊙观测温度波形,从而了解温度控制状态。

■系统构成

■显示器显示例

说明 GC 系列显示器可以将 10 进制数显示成 16 进制数,也可以将 10 进制数显示成 16 进制数,无须在 PLC 处作 BCD、BIN 转换。

第5章 规格一览


5-1 一般规格

电源电压	DC24V
电压容许变动范围/电流	DC21.6~26.4V 最大 100Ma
内部电源电压/电流	DC5V 最大 300mA
使用环境温度	0~+60°C
使用/保存环境湿度	5~95%RH(无节露)
保存温度	-20~70℃(无凝水)
绝缘阻抗	10MΩ以上 (500V DC)
耐电压	AC1500V (1分钟)
耐震动	JIS C 0040 基准
耐冲击	JIS C 0041 基准
质量	约 360g
安装方式	安装在基本基架(最多8个模块)
连接方式	可拆装端子台

5-2 性能规格

输入	热点偶: K、J、T、ER、S
	测温电阻: Pt、JPt
输入点数(路数)	4 点
控制输出	驱动 SSR 用晶体管输出
控制模式	带自动调节 PID 控制/带滞后 ON/OFF 控制
报警输出	无
设定方式	数据寄存器
指示方式	LED、数据寄存器显示
其他功能	设定值上、下限
	单位切换 (°C/°F)
	加热器断线检出
	输出正反切换
调节感度(ON/OFF 控制用)	0.1~3276.7°C/° F
比例 (P)	0.0~3276.7 内指定
积分时间(I)	0~32767s
微分时间 (D)	0~32767s
控制周期	0.5~99.9s(初始值=2S)
采样周期	100ms/路
自诊断功能	CPU 错、扫描超时、ROM 异常、自诊断错、RAM 错模拟量回
	路错、端子台脱落

5-3 内部回路图

光洋电子(无锡)有限公司

Koyo ELECTRONICS (WUXI) CO., LTD.

地址: 江苏省无锡市滨湖区建筑西路 599 号 1 栋 21 层

邮编: 214072

电话: 0510-85167888 传真: 0510-85161393

http://www.koyoele.com.cn

KEW-M3340A

2015年8月